Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation.

نویسندگان

  • Mahalakshmi Nair
  • Ippei Nagamori
  • Peng Sun
  • Durga Prasad Mishra
  • Catherine Rhéaume
  • Boan Li
  • Paolo Sassone-Corsi
  • Xing Dai
چکیده

Mammalian spermiogenesis, a process where haploid male germ cells differentiate to become mature spermatozoa, entails dramatic morphological and biochemical changes including remodeling of the germ cell chromatin. Proteins that contain one or more plant homeodomain (PHD) fingers have been implicated in the regulation of chromatin structure and function. Pygopus 2 (Pygo2) belongs to a family of evolutionarily conserved PHD finger proteins thought to act as co-activators of Wnt signaling effector complexes composed of beta-catenin and LEF/TCF transcription factor. Here we analyze mice containing hypomorphic alleles of pygopus 2 (Pygo2 or mpygo2) and uncover a beta-catenin-independent involvement of the Pygo2 protein in spermiogenesis. Pygo2 is expressed in elongating spermatids at stages when chromatin remodeling occurs, and block of Pygo2 function leads to spermiogenesis arrest and consequent infertility. Analysis of spermiogenesis in Pygo2 mutants reveals reduced expression of select post-meiotic genes including protamines, transition protein 2, and H1fnt, all of which are required for germ cell chromatin condensation, and drastically altered pattern of histone H3 hyperacetylation. These findings suggest that Pygo2 is involved in the chromatin remodeling events that lead to nuclear compaction of male germ cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation

Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain-containing proteins, is expressed in embryonic and p...

متن کامل

Pygo2 functions as a prognostic factor for glioma due to its up-regulation of H3K4me3 and promotion of MLL1/MLL2 complex recruitment

Pygo2 has been discovered as an important Wnt signaling component contributing to the activation of Wnt-target gene transcription. In the present study, we discovered that Pygo2 mRNA and protein levels were up-regulated in the majority of (152/209) human brain glioma tissues and five glioma cell lines, and significantly correlated with the age, the WHO tumor classification and poor patient surv...

متن کامل

Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis

Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on ...

متن کامل

Dynamics of staying put

Pygo2 opens chromatin and cycles cells B y spreading an active chromatin state, Pygo2 prompts the proliferation of mammary gland progenitor cells, report Gu et al. The fl y version of Pygo2, Pygopus, is essential for Wg signaling. But the relationship between mammalian Wg (Wnt) and Pygo2 is less clear. Pygo2 is necessary for the development of a number of tissues, but in the two best studied—ey...

متن کامل

Allosteric Remodelling of the Histone H3 Binding Pocket in the Pygo2 PHD Finger Triggered by Its Binding to the B9L/BCL9 Co-Factor

The Zn-coordinated PHD fingers of Pygopus (Pygo) proteins are critical for beta-catenin-dependent transcriptional switches in normal and malignant tissues. They bind to methylated histone H3 tails, assisted by their BCL9 co-factors whose homology domain 1 (HD1) binds to the rear PHD surface. Although histone-binding residues are identical between the two human Pygo paralogs, we show here that P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 320 2  شماره 

صفحات  -

تاریخ انتشار 2008